Electrophysiological properties of iCell Cardiomyocytes[®] obtained by automated patch clamp on the QPatch

1.SOPHION BIOSCIENCE A/S 2.CELLULAR DYNAMICS Baltorpvej 154 INTERNATIONAL, INC. DK - 2750 Ballerup 525 Science Drive Madison, WI 53711 DENMARK UNITED STATES info@sophion.com www.sophion.com

		:					•••••
RIKKE L SCHRØDER ¹	MEILE I CHRISTENSEN ⁺		GIORGIA SALVAGIOTIO ²	BLAKI	E ANSON ²	MORIEN SUNESEN ⁺	
	<u>.</u>				······		•••••

Introduction

Pluripotent stem cell-derived cardiomyocytes, iCells[®] Cardiomyocytes, were biophysically and pharmacologically characterized with planer automated patch clamp using the QPatch. iCells Cardiomyocytes are differentiated from human induced pluripotent stem cells. They are differentiated in large numbers and cryo-preserved, which make them highly suitable for automated patch clamping and facilitates their use in drug screening.

Here we present the results obtained during assay optimization of the cell culture, assay set-up on the QPatch as well as biophysical and pharmacological validation of the cardiac currents.

Implementing optimal cell culture routines, the iCells Cardiomyocytes demonstrated spontaneous rhythmical contractions indicating functional properties of adult cardiomyocytes. We tested the cells in two different QPatch recording modes; single-hole recordings and multi-hole recordings where up to ten cells are patched at the same time and the total current is measured per site. Three different types of currents were studied including sodium, calcium and potassium. By using specific buffer solutions and changing the voltage protocols it was possible to characterize calcium, and sodium currents from the same cell.

Our study showed that iCells Cardiomyocytes can successfully be applied to the QPatch. The recorded currents are similar to human cardiomyocytes and the response to known pharmacology is as expected. Using the QPatch we believe that iCells Cardiomyocytes have great potential for safety screening and other cardiovascular investigations early in the drug discovery process.

I_{Nav} multi-hole I-T plot; $I_{_{Nav}}$ current blocked by increasing concentrations of TTX (1, 3, 10, 30 $\mu\text{M})$ Dose-response plot. Data were fitted to the Hill equacurrent sweeps obtained at 0 mV in the absence (large peak) and presence of increasing concentratition and the IC₅₀ value for TTX was 6.3 μ M (± 4.5, ons of TTX (1, 3, 10, 30 µM) n=12) I_{Nav} single-hole

Material and Methods

Ringer solutions

Extracellular for I_{Na} (mM): 120 NaCl, 5 KCl, 3.6 CaCl₂, 1 MgCl₂, 20 TEACl, 10 HEPES. pH adjusted to 7.4 with NaOH.

Extracellular for I_{kr} (mM): 15 NaCl, 140 KCl, 1.2 CaCl₂, 1 MgCl₂, 10 HEPES. pH adjusted to 7.4 with NaOH

Extracelluar for I_{ca} (mM): 125 NMG, 3.6 CaCl₂, 1 MgCl₂, 20 TEA Chloride, 10 HEPES. pH adjusted to 7.4 with HCl

Intracellular for I_{Ca} and I_{Na} (mM): 120 CsCl, 3 MgCl₂, 10 EGTA, 5 HEPES, 4 Na₂-ATP. pH adjusted to 7.4 with CsOH Intracellular for I_{kr} (mM): 5.374 CaCl₂, 1.75 MgCl₂, 3.125/10 KOH/EGTA, 120 KCl. pH adjusted to 7.2 with KOH

Cells

Cryopreserved iCell Cardiomyocytes were received from Cellular Dynamics International. Each vial contained approximately 4.5 mio viable cadiomyocytes with a plating efficiency of 41-53 %. The cells were thawed and plated on fibronectin coated T-25 culture flasks using 60,000 cells per cm² to obtain a syncytial monolayer. The culture flasks were stored in a controlled environment in an incubator (37°C, and 5 % CO₂) and the culture media was exchanged every other day. The culturing was continued for six to eight days. After culturing the cells were harvested and prepared for QPatch experiments according to the SOP developed by Sophion.

QPatch

Small volumes of 50-100 µl cell suspension were applied to the QPatch. Cell positioning, giga sealing and whole-cell formation were obtained automatically with suction according to a pre-programmed suction protocol. Currents were recorded using either the single-hole or multi-hole technology. For the multi-hole technology up to 10 cells are patched per measurement site and the total current is recorded. For the single-hole technology one cell is patched per measurement site. Different voltage protocols were applied to obtain specific biophysical characteristics of the currents. Different liquids and increasing concentrations of the compounds were added automatically through the flow channels

Dose-response plot. Data were fitted to the Hill equation and the IC_{50} value for TTX was 10.3 μ M (± 0.5, n=6). (IC₅₀ lit. value 10.6 μ M, Schneider et al. 1994)

I_c, single-hole

Boltzmann fit of I_{Na} tail current obtained at +10 mV from currents prestimulated with voltage steps from -100 mV to +70 mV. The $V_{0.5}$ was -49.4 mV (\pm 2.9, n=5). (V_{0.5} lit. value -62 to -72 mV, Schneider et al. 1994)

I-T plot; I_{c_a} current blocked by increasing concentrations of nifedipine (0.1, 1, 10 µM)

in the QPlate. Data were analyzed using the QPatch Assay Software.

Results

iCell cardiomyocytes cultured for 7 days in a fibronectin coated culture flask

QPlate sealing overview

iCell cardiomyocytes harvested by trypsination procedure. The cell density is approximately 1.5 mio cells per ml.

iCells[®]. n refers to the number of QPlates 16's used for single-hole experiments

Dose-response plot. Data were fitted to the Hill equation and the IC⁵⁰ value for nifedipine was 95.3 nM (\pm 42.3, n=4)

I_{κ} single-hole

inward tail current sweeps recorded at -100 mV from a pre-pulse at +20 mV (1000 ms). The tail current was blocked by 10 μ M cisapride

 $I_{\mbox{\tiny K}}$ tail current recorded at -110 mV after a pre-pulse stimulation with voltage steps from -80 mV to 30 mV

I-V plot of the I_{ca} current. I_{ca} was activated by voltage steps from -60 mV to +50 mV. The current began to activate close to -40 mV and peaked at voltages between 0 and +10 mV. (Similar I-V relations, Pelzmann et al. 1998)

Boltzmann fit of the I_{ν} tail current. The V_{0.5} was -23.1 mV (± 7.5, n=5). $(V_{0.5}$ lit. value -21.5 mV, Sanguinetti and Jurkiewicz 1990)

Cell size	29 pF (±15, n=41)	N.D
Cells expressing I _{Na}	91 % (±16, n=40)*	N.D
Cells expressing I _{ca}	41 % (±39, n=58)*	N.D
Cells expressing I _k	80 % (±35, n=17)*	N.D
Usable I _{Na} data/QPlate	16 % (±10, n=224)	58 % (±22, n=80)
I _{Nav} amplitude	-3.5 nA (±2.2, n=24)	-6.4 nA (±42., n=46)
IC ₅₀ TTX for I _{Na}	10.3 µM (±0.5, n=6)	6.3 µM (±4.5, n=12)
Tau for I _{Na} inactivation***	0.85 ms (±0.29, n=22)	0.99 ms (±0.16, n=20)

Table 2. Comparing different results from I_{Na} , I_{Ca} and I_{μ} obtained from single-hole and multi-hole recordings. *Specific currents from established whole-cells. **Recorded at 0 mV. ***Data fitted to a monoexponential curve

In cooperation with:

References:

Schneider M, Proebstle T, Hombach A, Rüdel R. Plügers Arch, 1994;84-90 Drolet B, Khalifa M, Daleau P, Hamelin B, Turgeon J. Circulation, 2011;204-210 Sanguinetti MC, Jurkiewicz NK. J Gen Physiol, 1990;195-215 Pelzmann B, Schaffer P, Bernhart E, Lang P, Mächler H, Rigler B, Kiodl B. Cardiovascular Research, 1998;424-432

Conclusions

The study of ion channels in their native tissue using automated patch clamp has historically been impeded by factors like inadequate cell number and non-homogenous population. With the recent efforts in deriving cardiomyocytes from human pluripotent stem cells the challenges of cell number and homogeneity have been removed for automated patch clamp. Still, the stem cell derived cardiomyocytes exhibit some greater heterogeneity compared to heterologous cell lines in expression of I_{Na} , I_{Ca} , I_{κ} , which is limiting the data point throughput in automated patch clamp.

For the first time iCell Cardiomyocytes have been recorded using the multi-hole technology for automated patch clamping. Our results showed that biophysical and pharmacological characteristics of the I_{Na} currents were comparable using the single-hole and the multi-hole technique, respectively. The success rate for useable I_{Na} currents in the experiments increased significantly using the multi-hole technology. From our single-hole recordings we found that most cells expressed the I_{Na} and I_{κ} currents, and less than half of the cells expressed the I_{ca} current. The recordings from the three different currents, I_{Na} I_{ca} , I_{ν} , were similar to the recordings from human and other mammalian cardiomyocytes.

In conclusion, the iCell Cardiomyocytes can be cultured in sufficient numbers, can be cryo-preserved, are easy to handle regarding culturing and harvesting, show satisfactory success rates with the QPatch automated patch clamp system, and show expected biophysical and pharmacological behavior from three important currents $(I_{Na}, I_{Ca}, I_{\kappa})$. These characteristics make the iCell Cardiomyocytes a potential candidate for in vitro cardiac electrophysiological studies. Due to the flow channels in the QPlate extracellular liquids can be exchanged. This provides the possibility of more data points from each experiment (e.g full dose-response or recordings of different currents from the same cell) and therefore gives rise to potential cost savings for the user. Thus, we believe that with QPatch it is possible to obtain high quality recordings, and large number of data points obtained per experiment from a human endogenous cell type with iCells Cardiomyocytes, which makes these cells an attractive application for cardiac safety research.